PMT

GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper B MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D2 Paper B – Marking Guide

-		

2.

	start at A: tour is AEDBCA start at B: tour is BDEACB start at C: tour is CBDEAC start at D: tour is DBAECD start at E: tour is EABDCE	length = $6 + 9 + 7 + 11 + 16 = 49$ km length = $7 + 9 + 6 + 16 + 11 = 49$ km length = $11 + 7 + 9 + 6 + 16 = 49$ km length = $7 + 8 + 6 + 14 + 13 = 48$ km length = $6 + 8 + 7 + 13 + 14 = 48$ km	M1 A1 M1 A2	
	best upper bound = 48 km		A1	(6)
(a)	$x_{11} = \begin{cases} 1 & \text{if team 1 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{12} = \begin{cases} 1 & \text{if team 1 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{13} = \begin{cases} 1 & \text{if team 1 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{21} = \begin{cases} 1 & \text{if team 2 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{22} = \begin{cases} 1 & \text{if team 2 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{23} = \begin{cases} 1 & \text{if team 2 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{31} = \begin{cases} 1 & \text{if team 3 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{32} = \begin{cases} 1 & \text{if team 3 is assign} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if team 3 is assign} \\ 0 & \text{otherwise} \end{cases}$	ed to Maths ed to English ed to Verbal ed to Maths ed to English ed to Verbal ed to Maths ed to English ed to English ed to Verbal	B2	
(b)	minimise $z = 3x_{11} + 9x_{12} + 2x_{13} + 4x_{21}$	$+7x_{22} + x_{23} + 5x_{31} + 8x_{32} + 3x_{33}$	B2	
(c)	$\begin{array}{ll} x_{11} + x_{12} + x_{13} = 1 & \text{team 1} \\ x_{21} + x_{22} + x_{23} = 1 & \text{team 2} \\ x_{31} + x_{32} + x_{33} = 1 & \text{team 3} \\ x_{11} + x_{21} + x_{31} = 1 & \text{Maths} \\ x_{12} + x_{22} + x_{32} = 1 & \text{Englis} \\ x_{13} + x_{23} + x_{33} = 1 & \text{Verbal} \\ x_{ij} \ge 0 \text{ for all } i, j \\ \text{reference to balance} \end{array}$	marks exactly one style of paper marks exactly one style of paper marks exactly one style of paper papers are marked by one team only h papers are marked by one team only papers are marked by one team only	M1 A1 B1	(7)

3. (a) let A play strategies I and II with proportions p and (1 - p) expected payoff to A against each of B's strategies:

	B I $p + 3(1-p) = 3 - 2p$ B II $-p + 5(1-p) = 5 - 6p$ B III $2p - (1-p) = 3p - 1$	M1 A1
	giving	
	v ↑	
	5 - II - 5	
	4 4	
	3 - 3	
		B2
	p = 0 $p = 1$	
	it is not worth player B considering strategy I	A1
(b)	for optimal strategy $5 - 6p = 3p - 1$	
()	$\therefore 9p = 6, p = \frac{2}{3}$	
	\therefore A should play I $\frac{2}{2}$ of time and II $\frac{1}{2}$ of time	M1 A1
	······································	
	value of original game = $5 - (6 \times \frac{2}{3}) = 1$	M1 A1 (9)

4.

	Stage	State	Action	Destination	Total Profit	
	1	G	GI	Ι	12*	
		Н	HI	Ι	10*	A1
	2	D	DG DH	G H	14 + 12 = 26 17 + 10 = 27*	
		E	EG EH	G H	12 + 12 = 24 18 + 10 = 28*	
		F	FG FH	G H	13 + 12 = 25 19 + 10 = 29*	M1 A2
	3	A	AD AE AF	D E F	8+27=35 10+28=38 14+29=43*	
		В	BD BE BF	D E F	12 + 27 = 39 10 + 28 = 38 16 + 29 = 45*	
		С	CD CE CF	D E F	9 + 27 = 36 13 + 28 = 41 15 + 29 = 44*	M1 A1
	4	Home	Home-A Home-B Home-C	A B C	15 + 43 = 58* 11 + 45 = 56 13 + 44 = 57	A1
giv exj	ving route	<i>HomeAFH</i> fit = £580	M1 A1 A1 (10)			

M1

5.	need to	add	dummv	row	giving
	need to	uuu	Gammiy	1011	51,1115

row min. 27 80 8 81 8 28 60 5 71 5 30 90 7 73 7		
0 0 0 0 1 0		
19.72 \oint 73		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	
reducing columns will make no difference	B1	
2 lines required to cover all zeros, apply algorithm	B1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	
3 lines required to cover all zeros, apply algorithm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	
4 lines required to cover all zeros so allocation is possible	B1	
team A does the windows team B does the conservatory team C does the doors the greenhouse is not done	M1 A1	
total cost = $10 \times (27 + 60 + 7) = \text{\pounds}940$	A1	(13)

M1 A2

upper bound = 2 × weight of MST = $2 \times (8 + 5 + 8 + 9 + 7) = 2 \times 37 = 74$ miles M1 A1

(c) use AF saving 8 + 5 + 9 + 7 - 13 = 16use DE saving 8 + 9 - 12 = 5 M1 A1 new upper bound = 74 - 16 - 5 = 53 miles A1

lower bound = weight of MST + two edges of least weight from A = (5 + 8 + 9 + 7) + 8 + 10 = 47 miles M1 A1 (14)

PMT

7. *(a)* add dummy

	Α	В	Dummy	Available
С	7			7
D	3	2		5
Ε		4	4	8
Required	10	6	4	

(b) taking
$$R_1 = 0$$
, $R_1 + K_1 = 2$ \therefore $K_1 = 2$ $R_2 + K_1 = 2$ \therefore $R_2 = 0$
 $R_2 + K_2 = 5$ \therefore $K_2 = 5$ $R_3 + K_2 = 6$ \therefore $R_3 = 1$ M1 A2
 $R_3 + K_3 = 0$ \therefore $K_3 = -1$

	$K_1 = 2$	$K_2 = 5$	$K_3 = -1$
$R_1 = 0$	\bigcirc	3	0
$R_2 = 0$	\bigcirc	\bigcirc	0
$R_3 = 1$	7	\bigcirc	\bigcirc

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

$$\therefore I_{12} = 3 - 0 - 5 = ^2 I_{13} = 0 - 0 - (^-1) = 1 I_{23} = 0 - 0 - (^-1) = 1 I_{31} = 7 - 1 - 2 = 4$$

(*c*) pattern not optimal .:. apply algorithm

	Α	В	Dummy
С	$7 - \theta$	θ	
D	$3 + \theta$	$2 - \theta$	
Ε		4	4

let $\theta = 2$

	Α	В	Dummy
С	5	2	
D	5		
E		4	4

taking $R_1 = 0$,	$R_1 + K_1 = 2 \therefore K_1 = 2$	$R_1 + K_2 = 3 \therefore K_2 = 3$	
	$R_2 + K_1 = 2 \therefore R_2 = 0$	$R_3 + K_2 = 6 \therefore R_3 = 3$	M1 A1
	$R_3 + K_3 = 0$: $K_3 = -3$		

	$K_1 = 2$	<i>K</i> ₂ = 3	$K_3 = -3$
$R_1=0$	\bigcirc	\bigcirc	0
$R_2 = 0$	\bigcirc	5	0
$R_3 = 3$	7	\bigcirc	\bigcirc

$\therefore I_{13} = 0 - 0 - (-3) = 3$	
$I_{22} = 5 - 0 - 3 = 2$	
$I_{23} = 0 - 0 - (-3) = 3$	M1 A1
$I_{31} = 7 - 3 - 2 = 2$	
all immension and indicase and non-negative structure is antimal	D1

all improvement indices are non-negative : pattern is optimal B1 \therefore 5 from C go to A, 2 from C go to B, 5 from D go to A (16)

4 from *E* go to *B*, 4 from *E* do not play A1

M1

41

M1 A1

M1

A1

Performance Record – D2 Paper B

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	nearest neighbour	allocation, formulate lin. prog.	game, graphical method	dynamic prog., max.	allocation, dummy	TSP, shortcuts	transport., n-w corner, stepping- stone	
Marks	6	7	9	10	13	14	16	75
Student								