GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper B

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

D2 Paper B - Marking Guide

1.

start at A : tour is $A E D B C A$ start at B : tour is $B D E A C B$ start at C : tour is $C B D E A C$ start at D : tour is DBAECD start at E : tour is $E A B D C E$
length $=6+9+7+11+16=49 \mathrm{~km}$
length $=7+9+6+16+11=49 \mathrm{~km}$ length $=11+7+9+6+16=49 \mathrm{~km}$ length $=7+8+6+14+13=48 \mathrm{~km}$ length $=6+8+7+13+14=48 \mathrm{~km}$
best upper bound $=48 \mathrm{~km}$
2. (a) $x_{11}= \begin{cases}1 & \text { if team } 1 \text { is assigned to Maths } \\ 0 & \text { otherwise }\end{cases}$
$x_{12}= \begin{cases}1 & \text { if team } 1 \text { is assigned to English } \\ 0 & \text { onerwise }\end{cases}$
$x_{13}= \begin{cases}1 & \text { if team } 1 \text { is assigned to Verbal } \\ 0 & \text { therwise }\end{cases}$
$\{0$ otherwise
$x_{21}= \begin{cases}1 & \text { if team } 2 \text { is assigned to Maths } \\ 0 & \text { anemise }\end{cases}$
$\{0$ otherwise
$x_{22}= \begin{cases}1 & \text { if team } 2 \text { is assigned to English } \\ 0 & \text { otherwise }\end{cases}$
$x_{23}=\left\{\begin{array}{l}1 \text { if team } 2 \text { is assigned to Verbal }\end{array}\right.$
$\{0$ otherwise
$x_{31}= \begin{cases}1 & \text { if team } 3 \text { is assigned to Maths } \\ 0 & \text { otherwise }\end{cases}$
$x_{32}=\left\{\begin{array}{l}1 \text { if team } 3 \text { is assigned to English }\end{array}\right.$ $\{0$ otherwise
$x_{33}= \begin{cases}1 & \text { if team } 3 \text { is assigned to Verbal } \\ 0 & \text { otherwise }\end{cases}$
(b) minimise
$z=3 x_{11}+9 x_{12}+2 x_{13}+4 x_{21}+7 x_{22}+x_{23}+5 x_{31}+8 x_{32}+3 x_{33}$
(c) $x_{11}+x_{12}+x_{13}=1$ team 1 marks exactly one style of paper
$x_{21}+x_{22}+x_{23}=1 \quad$ team 2 marks exactly one style of paper
$x_{31}+x_{32}+x_{33}=1 \quad$ team 3 marks exactly one style of paper
$x_{11}+x_{21}+x_{31}=1 \quad$ Maths papers are marked by one team only
$x_{12}+x_{22}+x_{32}=1 \quad$ English papers are marked by one team only M1 A1
$x_{13}+x_{23}+x_{33}=1 \quad$ Verbal papers are marked by one team only
$x_{i j} \geq 0$ for all i, j
reference to balance B1
3. (a) let A play strategies I and II with proportions p and $(1-p)$
expected payoff to A against each of B 's strategies:
B I $\quad p+3(1-p)=3-2 p$
B II $\quad-p+5(1-p)=5-6 p$
M1 A1
B III $2 p-(1-p)=3 p-1$
giving

B2
it is not worth player B considering strategy I
A1
(b) for optimal strategy $5-6 p=3 p-1$

$$
\therefore 9 p=6, p=\frac{2}{3}
$$

$\therefore A$ should play I $\frac{2}{3}$ of time and II $\frac{1}{3}$ of time M1 A1
value of original game $=5-\left(6 \times \frac{2}{3}\right)=1$
M1 A1
4.

Stage	State	Action	Destination	Total Profit
1	G	GI	I	12*
	H	HI	I	10*
2	D	$\begin{aligned} & \hline D G \\ & D H \end{aligned}$	$\begin{aligned} & \hline G \\ & H \end{aligned}$	$\begin{aligned} & 14+12=26 \\ & 17+10=27^{*} \end{aligned}$
	E	$\begin{aligned} & E G \\ & E H \end{aligned}$	$\begin{aligned} & G \\ & H \end{aligned}$	$\begin{aligned} & 12+12=24 \\ & 18+10=28^{*} \end{aligned}$
	F	$\begin{aligned} & F G \\ & F H \end{aligned}$	$\begin{aligned} & \hline G \\ & H \end{aligned}$	$\begin{aligned} & 13+12=25 \\ & 19+10=29^{*} \end{aligned}$
3	A	$\begin{aligned} & \hline A D \\ & A E \\ & A F \end{aligned}$	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 8+27=35 \\ & 10+28=38 \\ & 14+29=43^{*} \end{aligned}$
	B	$\begin{aligned} & B D \\ & B E \\ & B F \end{aligned}$	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 12+27=39 \\ & 10+28=38 \\ & 16+29=45^{*} \end{aligned}$
	C	$\begin{aligned} & C D \\ & C E \\ & C F \end{aligned}$	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 9+27=36 \\ & 13+28=41 \\ & 15+29=44^{*} \end{aligned}$
4	Home	Home-A Home-B Home-C	$\begin{aligned} & \hline A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 15+43=58^{*} \\ & 11+45=56 \\ & 13+44=57 \end{aligned}$

giving route HomeAFHI
expected profit $=£ 580$
M1 A1
A1
5. need to add dummy row giving
row min.

27	80	8	81	8

$2860571 \quad 5$
$\begin{array}{lllll}30 & 90 & 7 & 73 & 7\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}$
reducing rows gives:
1972 ण 73
2355066
2383066
M1 A1
$0 \quad 0 \quad 0 \quad 0$
reducing columns will make no difference
B1
2 lines required to cover all zeros, apply algorithm
B1
053054
436047
464047
$\begin{array}{lllll}-0 & 0 & 19 & 0\end{array}$
(N.B. a different choice of lines will

M1 A1

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
0^{*} & 17 & 0 & 18 \\
-4 & 0^{*} & 0 & 11 \\
4 & 28 & 0^{*} & 11 \\
36 & 0 & 55 & 0^{*}
\end{array}
$$

M1 A1

4 lines required to cover all zeros so allocation is possible
B1
team A does the windows
team B does the conservatory
team C does the doors
M1 A1
the greenhouse is not done
total cost $=10 \times(27+60+7)=£ 940$
A1
6. (a)

add $A E-19, B E-14, D F-19$
(b)

upper bound $=2 \times$ weight of MST

$$
=2 \times(8+5+8+9+7)=2 \times 37=74 \text { miles }
$$

(c) use $A F$ saving $8+5+9+7-13=16$
use $D E$ saving $8+9-12=5$
M1 A1
new upper bound $=74-16-5=53$ miles
(d)

lower bound $=$ weight of MST + two edges of least weight from A

$$
=(5+8+9+7)+8+10=47 \text { miles }
$$

7. (a) add dummy

	A	B	Dummy	Available
C	7			7
D	3	2		5
E		4	4	8
Required	10	6	4	

(b)

$$
\begin{array}{llll}
\text { taking } R_{1}=0, & R_{1}+K_{1}=2 & \therefore K_{1}=2 & R_{2}+K_{1}=2 \quad \therefore R_{2}=0 \\
& R_{2}+K_{2}=5 & \therefore K_{2}=5 & R_{3}+K_{2}=6
\end{array} \therefore R_{3}=1
$$

	$K_{1}=2$	$K_{2}=5$		$K_{3}={ }^{-} 1$	
$R_{1}=0$	0	0	0		
$R_{2}=0$	0	0	0		
$R_{3}=1$	0	7	0	0	

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$

$$
\begin{aligned}
\therefore \quad I_{12} & =3-0-5=-2 \\
I_{13} & =0-0-(-1)=1 \\
& I_{23}
\end{aligned}=0-0-(-1)=1 .=7-1-2=4
$$

(c) pattern not optimal \therefore apply algorithm

	A	B	Dummy
C	$7-\theta$	θ	
D	$3+\theta$	$2-\theta$	
E		4	4

let $\theta=2$

	A	B	Dummy
C	5	2	
D	5		
E		4	4

taking $R_{1}=0, \quad R_{1}+K_{1}=2 \quad \therefore K_{1}=2 \quad R_{1}+K_{2}=3 \quad \therefore K_{2}=3$

$$
R_{2}+K_{1}=2 \quad \therefore R_{2}=0 \quad R_{3}+K_{2}=6 \quad \therefore R_{3}=3
$$

$$
R_{3}+K_{3}=0 \quad \therefore K_{3}=-3
$$

	$K_{1}=2$	$K_{2}=3$	$K_{3}={ }^{-} 3$	
$R_{1}=0$	0	0	0	
$R_{2}=0$	0	0	0	
$R_{3}=3$		7	0	0

$$
\begin{aligned}
\therefore \quad I_{13} & =0-0-(-3)=3 \\
I_{22} & =5-0-3=2 \\
I_{23} & =0-0-(-3)=3 \\
I_{31} & =7-3-2=2
\end{aligned}
$$

all improvement indices are non-negative \therefore pattern is optimal
$\therefore 5$ from C go to $A, 2$ from C go to $B, 5$ from D go to A 4 from E go to $B, 4$ from E do not play

Performance Record - D2 Paper B

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Question no. } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \text { Total } \\ \hline \text { Topic(s) } & \begin{array}{l}\text { nearest } \\ \text { neighbour }\end{array} & \begin{array}{l}\text { allocation, } \\ \text { formulate } \\ \text { lin. prog. }\end{array} \\ \hline \text { Mame, } \\ \text { graphical } \\ \text { method }\end{array} \begin{array}{l}\text { dynamic } \\ \text { prog., } \\ \text { max. }\end{array} . \begin{array}{l}\text { allocation, } \\ \text { dummy }\end{array} \begin{array}{l}\text { TSP, } \\ \text { shortcuts }\end{array} \begin{array}{l}\text { transport,. } \\ \text { n-w corner, } \\ \text { stepping- } \\ \text { stone }\end{array}\right)$

